metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichloridotripyridine(triphenylphosphine)ruthenium(II)

Rafal Kruszynski^a* and Jan Grzegorz Małecki^b

^aInstitute of General and Ecological Chemistry, Technical University of Łódź, Zeromskiego 116, 90-924 Łódź, Poland, and ^bDepartment of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland Correspondence e-mail: rafal.kruszynski@p.lodz.pl

Received 12 November 2007; accepted 13 November 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.019; wR factor = 0.052; data-to-parameter ratio = 14.2.

All interatomic distances and angles in the title compound, $[RuCl_2(C_5H_5N)_3(C_{18}H_{15}P)]$, are normal. The Ru atom is octahedrally and the P atom tetrahedrally coordinated. The structure is stabilized by several weak $C-H\cdots Cl$ intramolecular hydrogen bonds.

Related literature

For related literature, see: Wong & Lau (1994). See also: Allen (2002); Desiraju & Steiner (1999).

Experimental

Crystal data

 $[RuCl_2(C_5H_5N)_3(C_{18}H_{15}P)]$ $M_r = 671.54$ Triclinic, $P\overline{1}$ a = 8.5807 (1) Å b = 10.1447 (1) Å c = 16.9834 (2) Å $\alpha = 78.927$ (1)° $\beta = 85.539$ (1)° $\gamma = 89.174 (1)^{\circ}$ $V = 1446.46 (3) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.81 \text{ mm}^{-1}$ T = 291.0 (3) K $0.37 \times 0.37 \times 0.37 \text{ mm}$

Data collection

Kuma KM4 CCD diffractometer14401 measured reflectionsAbsorption correction: numerical5119 independent reflections(X-RED; Stoe & Cie, 1999)4735 reflections with $I > 2\sigma(I)$ $T_{min} = 0.720, T_{max} = 0.740$ $R_{int} = 0.019$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.019$ 361 parameters $wR(F^2) = 0.052$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.28 \text{ e } \text{ Å}^{-3}$ 5119 reflections $\Delta \rho_{min} = -0.61 \text{ e } \text{ Å}^{-3}$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots Cl2$	0.93	2.55	3.3456 (18)	144
C19−H19···Cl1	0.93	2.69	3.1771 (19)	113
$C23 - H23 \cdot \cdot \cdot Cl2$	0.93	2.72	3.1681 (19)	110
$C24 - H24 \cdots Cl2$	0.93	2.76	3.2128 (19)	111
C28−H28···Cl1	0.93	2.81	3.254 (2)	111
C29-H29···Cl2	0.93	2.57	3.257 (2)	131
C33−H33···Cl1	0.93	2.53	3.203 (2)	129

Data collection: *CrysAlis CCD* (Kuma, 2000); cell refinement: *CrysAlis RED* (Kuma, 2000); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL/PC* (Sheldrick, 1990*b*); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2611).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. IUCr Monograph on Crystallography 9. Oxford University Press.
- Kuma (2000). CrysAlis CCD and CrysAlis RED. Versions 1.163. Kuma Diffraction Instruments GmbH, Wrocław, Poland.
- Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1990b). *SHELXTL/PC*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

- Stoe & Cie (1999). X-RED. Version 1.18. Stoe & Cie GmbH, Darmstadt, Germany.
- Wong, W.-T. & Lau, T.-C. (1994). Acta Cryst. C50, 1406-1407.

Acta Cryst. (2007). E63, m3052 [doi:10.1107/S1600536807058576]

Dichloridotripyridine(triphenylphosphine)ruthenium(II)

R. Kruszynski and J. G. Malecki

Comment

In the Cambridge Structural Database (Version 5.28 + 3 updates, 01–2007, 05–2007, 08–2007; Allen, 2002) can be found 213 ruthenium complexes containing pyridine (py) in inner coordination sphere (1 compound containing 6 py molecules, 30 compounds containing 5 py molecules, 14 compounds containing 3 py molecules, 55 compounds containing 2 py molecules and 113 compounds containing 1 py molecule), but title compound (I) is the first reported structure containing 3 py molecules and PPh₃ subsituent bonded to Ru cation. Additionally, (I) is the first known structure of compound having 3 py molecules and *trans* arranged halogen atoms.

All intramolecular distances and angles in (I) (Fig. 1) can be considered normal. All atoms lie in general positions. The planes of the phenyl rings of the triphenylphosphine substituent are inclined at 67.93 (6), 67.28 (6) and 59.54 (7)° respectively for pairs of rings indicated by C1/C7, C7/C13 and C1/C13 atoms. The close to planarity pyridine rings are inclined at 66.04 (5), 81.63 (7) and 45.23 (8)° respectively for pairs of rings containing N1/N2, N2/N3 and N1/N3 atoms. The Ru1 atom deviates by 0.098 (3), 0.092 (3) and 0.005 (3)Å from weighted lest squares planes of pyridine rings indicated respectively by N1, N2 and N3 atoms. In the structure can be found several intramolecular C—H…O short contacts (Table 1) which, according to Desiraju & Steiner (1999), can be classified as weak hydrogen bonds. In the structure can not be found any unusual intermolecular interactions.

Experimental

The complex was prepared by adding the pyridine salt of 8-hydroxy-2-methyl-quinoline-7-carbodithioic acid to the solution of $[RuCl_2(PPh_3)_3]$ in methanol (100 ml). The reaction mixture was refluxed by 3 h. The crystals of (I) were obtained by slow evaporation of the methanol solution of the complex.

Usage of pyridine instead of its salt leads to [RuCl₂(pyridine)₄] (Wong and Lau, 1994), thus usage of salt is important.

Refinement

All hydrogen atoms were placed in calculated positions and were refined as riding on their parent atom with fixed U values $[U_{iso}(H) = 1.2U_{eq}(C)]$.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Dichloridotripyridine(triphenylphosphine)ruthenium(II)

Crystal data	
[RuCl ₂ (C ₅ H ₅ N) ₃ (C ₁₈ H ₁₅ P)]	Z = 2
$M_r = 671.54$	$F_{000} = 684$
Triclinic, <i>P</i> T	$D_x = 1.542 \text{ Mg m}^{-3}$ $D_m = 1.54 \text{ Mg m}^{-3}$ D_m measured by Berman density torsion balance
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.5807 (1) Å	Cell parameters from 7117 reflections
b = 10.1447 (1) Å	$\theta = 3-20^{\circ}$
c = 16.9834 (2) Å	$\mu = 0.81 \text{ mm}^{-1}$
$\alpha = 78.927 \ (1)^{\circ}$	T = 291.0 (3) K
$\beta = 85.539 (1)^{\circ}$	Prism, yellow
$\gamma = 89.174 \ (1)^{\circ}$	$0.37 \times 0.37 \times 0.37 \text{ mm}$
V = 1446.46 (3) Å ³	

Data collection

Kuma KM4 CCD diffractometer	5119 independent reflections
Radiation source: fine-focus sealed tube	4735 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
Detector resolution: 1048576 pixels mm ⁻¹	$\theta_{\text{max}} = 25.1^{\circ}$
T = 291.0(3) K	$\theta_{\min} = 2.1^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: numerical (X-RED; Stoe & Cie,1999)	$k = -9 \rightarrow 12$
$T_{\min} = 0.720, \ T_{\max} = 0.740$	$l = -20 \rightarrow 20$
14401 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.019$ H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.028P)^2 + 0.5954P]$ $wR(F^2) = 0.052$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ S = 1.07 $\Delta \rho_{\text{max}} = 0.28 \text{ e} \text{ Å}^{-3}$ 5119 reflections $\Delta \rho_{\rm min} = -0.61 \ e \ {\rm \AA}^{-3}$ 361 parameters Primary atom site location: structure-invariant direct

methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and i	sotron	ic or e	auivalent	isotron	oic dis	nlacement	narameters	$(Å^2$	1
1 ruchonui	uionnic	coorainaics	unu i	souopi		γπιναιζπι	isonop	ic ais	pracement	purumeters	(11	1

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Ru1	0.616943 (15)	0.517519 (12)	0.720182 (8)	0.02183 (5)
C11	0.78369 (5)	0.48535 (5)	0.82957 (3)	0.03334 (10)
Cl2	0.44394 (5)	0.58568 (4)	0.61271 (3)	0.03378 (10)
P1	0.50574 (5)	0.31054 (4)	0.77488 (3)	0.02394 (10)
C1	0.4244 (2)	0.20909 (17)	0.70880 (11)	0.0278 (4)
C2	0.4343 (2)	0.25245 (18)	0.62632 (11)	0.0317 (4)
H2	0.4719	0.3382	0.6044	0.038*
C3	0.3892 (2)	0.1701 (2)	0.57575 (12)	0.0374 (4)
H3	0.3985	0.2000	0.5203	0.045*
C4	0.3307 (2)	0.0442 (2)	0.60780 (13)	0.0412 (5)
H4	0.2993	-0.0109	0.5741	0.049*
C5	0.3188 (3)	-0.0001 (2)	0.68980 (13)	0.0427 (5)
Н5	0.2783	-0.0851	0.7115	0.051*
C6	0.3664 (2)	0.08047 (18)	0.73990 (12)	0.0373 (4)
Н6	0.3597	0.0488	0.7952	0.045*
C7	0.6369 (2)	0.17868 (17)	0.82475 (11)	0.0289 (4)
C8	0.6343 (3)	0.1353 (2)	0.90699 (12)	0.0426 (5)
H8	0.5659	0.1751	0.9406	0.051*
C9	0.7321 (3)	0.0333 (2)	0.94012 (14)	0.0535 (6)
Н9	0.7277	0.0046	0.9957	0.064*
C10	0.8345 (3)	-0.0252 (2)	0.89218 (16)	0.0571 (6)
H10	0.9018	-0.0921	0.9147	0.069*
C11	0.8376 (3)	0.0153 (3)	0.81022 (16)	0.0623 (7)
H11	0.9063	-0.0251	0.7770	0.075*

C12	0.7388 (3)	0.1161 (2)	0.77697 (13)	0.0469 (5)
H12	0.7411	0.1421	0.7213	0.056*
C13	0.3515 (2)	0.31553 (17)	0.85465 (10)	0.0288 (4)
C14	0.3886 (2)	0.37404 (18)	0.91916 (11)	0.0351 (4)
H14	0.4906	0.4016	0.9218	0.042*
C15	0.2764 (3)	0.3912 (2)	0.97845 (12)	0.0457 (5)
H15	0.3030	0.4286	1.0215	0.055*
C16	0.1246 (3)	0.3530 (2)	0.97428 (14)	0.0539 (6)
H16	0.0482	0.3667	1.0138	0.065*
C17	0.0857 (3)	0.2945 (2)	0.91187 (15)	0.0507 (6)
H17	-0.0166	0.2671	0.9099	0.061*
C18	0.1980 (2)	0.2761 (2)	0.85205 (12)	0.0380 (4)
H18	0.1705	0.2370	0.8098	0.046*
N1	0.46188 (17)	0.62309 (14)	0.78690 (9)	0.0270 (3)
C19	0.5158 (2)	0.70417 (18)	0.83268 (11)	0.0326 (4)
H19	0.6233	0.7149	0.8323	0.039*
C20	0.4199 (3)	0.7718 (2)	0.87986 (12)	0.0425 (5)
H20	0.4622	0.8272	0.9104	0.051*
C21	0.2598 (3)	0.7566 (2)	0.88150 (13)	0.0477 (5)
H21	0.1926	0.7992	0.9143	0.057*
C22	0.2026 (2)	0.6768 (2)	0.83332 (12)	0.0401 (5)
H22	0.0954	0.6661	0.8321	0.048*
C23	0.3050 (2)	0.61331 (18)	0.78716 (11)	0.0312 (4)
H23	0.2646	0.5608	0.7543	0.037*
N2	0.73976 (17)	0.70292 (14)	0.67324 (9)	0.0283 (3)
C24	0.6679 (2)	0.81775 (18)	0.64484 (11)	0.0359 (4)
H24	0.5593	0.8190	0.6471	0.043*
C25	0.7482 (3)	0.9347 (2)	0.61224 (13)	0.0479 (5)
H25	0.6943	1.0132	0.5934	0.057*
C26	0.9085 (3)	0.9341 (2)	0.60793 (14)	0.0535 (6)
H26	0.9651	1.0116	0.5856	0.064*
C27	0.9833 (3)	0.8172 (2)	0.63714 (14)	0.0477 (5)
H27	1.0919	0.8140	0.6349	0.057*
C28	0.8966 (2)	0.7047 (2)	0.66977 (12)	0.0364 (4)
H28	0.9487	0.6261	0.6904	0.044*
N3	0.78249 (16)	0.42674 (13)	0.64618 (8)	0.0252 (3)
C29	0.7641 (2)	0.4297 (2)	0.56892 (11)	0.0345 (4)
H29	0.6772	0.4737	0.5469	0.041*
C30	0.8668 (2)	0.3711 (2)	0.51992 (13)	0.0441 (5)
H30	0.8473	0.3731	0.4666	0.053*
C31	0.9988 (3)	0.3094 (2)	0.55034 (13)	0.0462 (5)
H31	1.0703	0.2691	0.5184	0.055*
C32	1.0214 (3)	0.3092 (2)	0.62922 (14)	0.0490 (5)
H32	1.1105	0.2700	0.6515	0.059*
C33	0.9122 (2)	0.3669 (2)	0.67520 (13)	0.0420 (5)
H33	0.9286	0.3644	0.7289	0.050*

Atomic displacement parameters	(A^2))

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.02144 (8)	0.02457 (8)	0.02026 (8)	0.00073 (5)	-0.00374 (5)	-0.00545 (5)
Cl1	0.0321 (2)	0.0429 (2)	0.0281 (2)	0.00523 (19)	-0.01118 (18)	-0.01125 (18)
Cl2	0.0348 (2)	0.0379 (2)	0.0301 (2)	0.00577 (18)	-0.01235 (19)	-0.00677 (18)
P1	0.0261 (2)	0.0258 (2)	0.0202 (2)	-0.00026 (17)	-0.00340 (17)	-0.00459 (16)
C1	0.0280 (9)	0.0282 (9)	0.0281 (9)	-0.0015 (7)	-0.0052 (7)	-0.0064 (7)
C2	0.0344 (10)	0.0316 (9)	0.0287 (10)	-0.0058 (8)	-0.0021 (8)	-0.0042 (7)
C3	0.0419 (11)	0.0454 (11)	0.0265 (10)	-0.0058 (9)	-0.0037 (8)	-0.0095 (8)
C4	0.0449 (12)	0.0423 (11)	0.0414 (12)	-0.0088 (9)	-0.0085 (9)	-0.0180 (9)
C5	0.0531 (13)	0.0302 (10)	0.0451 (12)	-0.0126 (9)	-0.0085 (10)	-0.0054 (8)
C6	0.0488 (12)	0.0318 (10)	0.0304 (10)	-0.0068 (8)	-0.0080 (9)	-0.0012 (8)
C7	0.0309 (9)	0.0259 (9)	0.0305 (9)	0.0001 (7)	-0.0073 (7)	-0.0051 (7)
C8	0.0480 (12)	0.0472 (12)	0.0313 (11)	0.0115 (10)	-0.0067 (9)	-0.0039 (9)
С9	0.0639 (15)	0.0539 (13)	0.0392 (13)	0.0129 (12)	-0.0143 (11)	0.0035 (10)
C10	0.0589 (15)	0.0454 (13)	0.0642 (16)	0.0213 (11)	-0.0177 (12)	0.0004 (11)
C11	0.0671 (16)	0.0594 (15)	0.0599 (16)	0.0329 (13)	-0.0034 (13)	-0.0131 (12)
C12	0.0564 (13)	0.0479 (12)	0.0354 (11)	0.0176 (10)	-0.0030 (10)	-0.0071 (9)
C13	0.0311 (9)	0.0290 (9)	0.0234 (9)	0.0040 (7)	0.0006 (7)	0.0009 (7)
C14	0.0438 (11)	0.0333 (10)	0.0269 (10)	0.0037 (8)	-0.0010 (8)	-0.0033 (7)
C15	0.0650 (15)	0.0422 (11)	0.0264 (10)	0.0116 (10)	0.0066 (10)	-0.0028 (8)
C16	0.0561 (14)	0.0520 (13)	0.0424 (13)	0.0174 (11)	0.0208 (11)	0.0076 (10)
C17	0.0323 (11)	0.0548 (13)	0.0547 (14)	0.0050 (10)	0.0076 (10)	0.0101 (11)
C18	0.0322 (10)	0.0407 (11)	0.0380 (11)	0.0022 (8)	-0.0028 (8)	0.0001 (8)
N1	0.0302 (8)	0.0258 (7)	0.0245 (7)	0.0019 (6)	-0.0021 (6)	-0.0037 (6)
C19	0.0369 (10)	0.0318 (9)	0.0294 (10)	0.0015 (8)	-0.0035 (8)	-0.0062 (7)
C20	0.0576 (13)	0.0388 (11)	0.0329 (11)	0.0056 (9)	-0.0019 (9)	-0.0127 (8)
C21	0.0517 (13)	0.0481 (12)	0.0414 (12)	0.0135 (10)	0.0112 (10)	-0.0104 (10)
C22	0.0327 (10)	0.0430 (11)	0.0396 (11)	0.0058 (8)	0.0049 (9)	0.0012 (9)
C23	0.0299 (9)	0.0293 (9)	0.0323 (10)	0.0017 (7)	-0.0023 (8)	-0.0007 (7)
N2	0.0303 (8)	0.0310 (8)	0.0249 (8)	-0.0040 (6)	0.0002 (6)	-0.0087 (6)
C24	0.0439 (11)	0.0320 (10)	0.0331 (10)	-0.0004 (8)	-0.0043 (8)	-0.0087 (8)
C25	0.0719 (16)	0.0304 (10)	0.0417 (12)	-0.0037 (10)	-0.0066 (11)	-0.0068 (9)
C26	0.0670 (16)	0.0441 (13)	0.0489 (13)	-0.0274 (11)	0.0072 (11)	-0.0104 (10)
C27	0.0430 (12)	0.0523 (13)	0.0506 (13)	-0.0184 (10)	0.0042 (10)	-0.0186 (10)
C28	0.0339 (10)	0.0405 (10)	0.0372 (11)	-0.0057 (8)	-0.0007 (8)	-0.0138 (8)
N3	0.0240 (7)	0.0259 (7)	0.0262 (8)	-0.0011 (6)	-0.0034 (6)	-0.0055 (6)
C29	0.0296 (9)	0.0437 (11)	0.0305 (10)	0.0011 (8)	-0.0028 (8)	-0.0075 (8)
C30	0.0421 (12)	0.0614 (13)	0.0307 (11)	0.0039 (10)	-0.0018 (9)	-0.0144 (10)
C31	0.0420 (12)	0.0554 (13)	0.0435 (13)	0.0097 (10)	0.0042 (10)	-0.0192 (10)
C32	0.0413 (12)	0.0644 (14)	0.0443 (13)	0.0227 (11)	-0.0097 (10)	-0.0174 (11)
C33	0.0396 (11)	0.0546 (12)	0.0347 (11)	0.0144 (9)	-0.0094 (9)	-0.0144 (9)
Geometric parat	neters (Å, °)					

Ru1—N1	2.0956 (14)	C16—H16	0.9300
Ru1—N3	2.1389 (14)	C17—C18	1.382 (3)

Ru1—N2	2.1527 (14)	С17—Н17	0.9300
Ru1—P1	2.3137 (4)	C18—H18	0.9300
Ru1—Cl1	2.4026 (4)	N1—C19	1.345 (2)
Ru1—Cl2	2.4331 (4)	N1—C23	1.350 (2)
P1—C13	1.8260 (18)	C19—C20	1.372 (3)
P1—C1	1.8419 (17)	С19—Н19	0.9300
P1—C7	1.8557 (18)	C20—C21	1.382 (3)
C1—C2	1.381 (3)	С20—Н20	0.9300
C1—C6	1.394 (3)	C21—C22	1.377 (3)
C2—C3	1.387 (3)	C21—H21	0.9300
С2—Н2	0.9300	C22—C23	1.368 (3)
C3—C4	1.374 (3)	С22—Н22	0.9300
С3—Н3	0.9300	С23—Н23	0.9300
C4—C5	1.375 (3)	N2—C24	1.334 (2)
C4—H4	0.9300	N2—C28	1.343 (2)
C5—C6	1.375 (3)	C24—C25	1.379 (3)
С5—Н5	0.9300	C24—H24	0.9300
С6—Н6	0.9300	C25—C26	1.372 (3)
C7—C12	1.377 (3)	C25—H25	0.9300
С7—С8	1.380 (3)	C26—C27	1.366 (3)
С8—С9	1.384 (3)	C26—H26	0.9300
С8—Н8	0.9300	C27—C28	1.372 (3)
C9—C10	1.358 (3)	С27—Н27	0.9300
С9—Н9	0.9300	C28—H28	0.9300
C10—C11	1.372 (4)	N3—C29	1.328 (2)
C10—H10	0.9300	N3—C33	1.342 (2)
C11—C12	1.382 (3)	C29—C30	1.373 (3)
С11—Н11	0.9300	С29—Н29	0.9300
C12—H12	0.9300	C30—C31	1.373 (3)
C13—C18	1.389 (3)	С30—Н30	0.9300
C13—C14	1 401 (3)	$C_{31} - C_{32}$	1 368 (3)
C14—C15	1 372 (3)	C31—H31	0.9300
C14—H14	0.9300	C_{32} $-C_{33}$	1,370(3)
C15—C16	1 375 (3)	C32—H32	0.9300
C15—H15	0.9300	С33—Н33	0.9300
C16—C17	1 375 (4)		0.9500
N1 Bul N2	174.80 (5)	C16 C15 U15	120.0
NI Dr.1 N2	1/4.89 (5)	C10-C15-H15	120.0
NI—RuI—N2	88.01 (5)		120.1 (2)
N3—Ru1—N2	86.42 (5)	C1/-C16-H16	119.9
NI—RuI—PI	94.11 (4)	C15-C16-H16	119.9
N3—RuI—PI	90.94 (4)		120.3 (2)
$N_{1} = K_{1} = C_{1}$	1/4.89 (4)	C10-C17-H17	119.8
NI—RuI—CII	88.58 (4)		119.8
N3—Kul—Cli	92.37 (4)	C1/-C18-C13	120.4 (2)
N2—Kul—Cli	8/.44 (4)	C1/C18H18	119.8
PI—Rul—Cll	88.298 (16)	C13—C18—H18	119.8
NI—Rul—Cl2	85.00 (4)	C19—N1—C23	116.58 (15)
N3—Ru1—Cl2	93.51 (4)	C19—N1—Ru1	120.66 (12)
N2—Ru1—Cl2	86.29 (4)	C23—N1—Ru1	122.75 (12)

P1—Ru1—Cl2	98.252 (16)	N1-C19-C20	123.20 (18)
Cl1—Ru1—Cl2	171.122 (16)	N1—C19—H19	118.4
C13—P1—C1	104.93 (8)	С20—С19—Н19	118.4
C13—P1—C7	101.78 (8)	C19—C20—C21	119.29 (19)
C1—P1—C7	96.49 (8)	С19—С20—Н20	120.4
C13—P1—Ru1	114.03 (6)	С21—С20—Н20	120.4
C1—P1—Ru1	119.86 (6)	C22—C21—C20	118.23 (19)
C7—P1—Ru1	116.92 (6)	C22—C21—H21	120.9
C2—C1—C6	118.14 (16)	C20-C21-H21	120.9
C2—C1—P1	120.84 (13)	C23—C22—C21	119.32 (19)
C6—C1—P1	120.67 (14)	С23—С22—Н22	120.3
C1—C2—C3	121.03 (17)	C21—C22—H22	120.3
C1—C2—H2	119.5	N1—C23—C22	123.31 (18)
С3—С2—Н2	119.5	N1—C23—H23	118.3
C4—C3—C2	119.82 (18)	С22—С23—Н23	118.3
С4—С3—Н3	120.1	C24—N2—C28	117.26 (16)
С2—С3—Н3	120.1	C24—N2—Ru1	123.23 (13)
C3—C4—C5	119.91 (17)	C28—N2—Ru1	119.49 (12)
C3—C4—H4	120.0	N2—C24—C25	122.68 (19)
C5—C4—H4	120.0	N2—C24—H24	118.7
C6—C5—C4	120.30 (18)	С25—С24—Н24	118.7
С6—С5—Н5	119.8	C26—C25—C24	119.3 (2)
С4—С5—Н5	119.8	С26—С25—Н25	120.4
C5—C6—C1	120.78 (18)	С24—С25—Н25	120.4
С5—С6—Н6	119.6	C27—C26—C25	118.5 (2)
С1—С6—Н6	119.6	С27—С26—Н26	120.7
C12—C7—C8	117.71 (17)	C25—C26—H26	120.7
C12—C7—P1	118.27 (14)	C26—C27—C28	119.4 (2)
C8—C7—P1	123.96 (15)	С26—С27—Н27	120.3
С7—С8—С9	121.0 (2)	С28—С27—Н27	120.3
С7—С8—Н8	119.5	N2-C28-C27	122.9 (2)
С9—С8—Н8	119.5	N2-C28-H28	118.6
C10-C9-C8	120.5 (2)	С27—С28—Н28	118.6
С10—С9—Н9	119.7	C29—N3—C33	116.77 (16)
С8—С9—Н9	119.7	C29—N3—Ru1	121.74 (12)
C9—C10—C11	119.4 (2)	C33—N3—Ru1	121.47 (12)
С9—С10—Н10	120.3	N3—C29—C30	123.32 (18)
C11—C10—H10	120.3	N3—C29—H29	118.3
C10-C11-C12	120.1 (2)	С30—С29—Н29	118.3
C10-C11-H11	119.9	C29—C30—C31	119.41 (19)
C12-C11-H11	119.9	С29—С30—Н30	120.3
C7—C12—C11	121.2 (2)	С31—С30—Н30	120.3
C7—C12—H12	119.4	C32—C31—C30	117.79 (19)
C11—C12—H12	119.4	C32—C31—H31	121.1
C18—C13—C14	118.24 (18)	С30—С31—Н31	121.1
C18—C13—P1	124.34 (14)	C31—C32—C33	119.72 (19)
C14—C13—P1	117.18 (14)	С31—С32—Н32	120.1
C15—C14—C13	120.9 (2)	С33—С32—Н32	120.1
C15—C14—H14	119.6	N3—C33—C32	122.95 (19)

C13—C14—H14	119.6	.6 N3—C33—H33		118.5	;
C14—C15—C16	120.0 (2)		С32—С33—Н33	118.5	
C14—C15—H15	120.0				
Hydrogen-bond geometry (Å, °)					
D—H···A	1	D—H	H···A	$D \cdots A$	D—H···A
C2—H2…Cl2	0).93	2.55	3.3456 (18)	144
C19—H19…Cl1	0).93	2.69	3.1771 (19)	113
C23—H23···Cl2	0).93	2.72	3.1681 (19)	110
C24—H24…Cl2	0).93	2.76	3.2128 (19)	111
C28—H28…Cl1	0).93	2.81	3.254 (2)	111
C29—H29····Cl2	0).93	2.57	3.257 (2)	131
C33—H33…Cl1	().93	2.53	3.203 (2)	129

